Bubble towers for supercritical semilinear elliptic equations
نویسندگان
چکیده
Abstract : We construct positive solutions of the semilinear elliptic problem ∆u + λu + up = 0 with Dirichet boundary conditions, in a bounded smooth domain Ω ⊂ RN (N ≥ 4), when the exponent p is supercritical and close enough to N+2 N−2 and the parameter λ ∈ R is small enough. As p → N+2 N−2 , the solutions have multiple blow up at finitely many points which are the critical points of a function whose definition involves Green’s function. Our result extends the result of Del Pino, Dolbeault and Musso [5] when Ω is a ball and the solutions are radially symmetric. 2000 mathematics subject classification: 35J60, 35J25
منابع مشابه
Numerical Simulation of Separation Bubble on Elliptic Cylinders Using Three-equation k-? Turbulence Model
Occurrence of laminar separation bubbles on solid walls of an elliptic cylinder has been simulated using a recently developed transitional model for boundary layer flows. Computational method is based on the solution of the Reynolds averaged Navier-Stokes (RANS) equations and the eddy-viscosity concept. Transitional model tries to simulate streamwise fluctuations, induced by freestream turbulen...
متن کاملNon-existence and uniqueness results for supercritical semilinear elliptic equations
Non-existence and uniqueness results are proved for several local and non-local supercritical bifurcation problems involving a semilinear elliptic equation depending on a parameter. The domain is star-shaped and such that a Poincaré inequality holds but no other symmetry assumption is required. Uniqueness holds when the bifurcation parameter is in a certain range. Our approach can be seen, in s...
متن کاملSign-changing Bubble Towers for Asymptotically Critical Elliptic Equations on Riemannian Manifolds
Given a smooth compact Riemannian n–manifold (M, g), we consider the equation ∆gu+ hu = |u| ∗−2−ε u, where h is a C–function on M , the exponent 2∗ := 2n/ (n− 2) is the critical Sobolev exponent, and ε is a small positive real parameter such that ε→ 0. We prove the existence of blowing-up families of sign-changing solutions which develop bubble towers at some point where the function h is great...
متن کاملExistence and multiplicity of positive solutions for a class of semilinear elliptic system with nonlinear boundary conditions
This study concerns the existence and multiplicity of positive weak solutions for a class of semilinear elliptic systems with nonlinear boundary conditions. Our results is depending on the local minimization method on the Nehari manifold and some variational techniques. Also, by using Mountain Pass Lemma, we establish the existence of at least one solution with positive energy.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008